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This paper considers the Monte Carlo dynamics of random dimer coverings of 
the square lattice, which can be mapped to a rough interface model. Two kinds 
of slow modes are identified, associated respectively with long-wavelength fluc- 
tuations of the interface height, and with slow drift (in time) of the system-wide 
mean height. Within a continuum theory, the longest relaxation time for either 
kind of mode scales as the system size N. For the real, discrete model, an exact 
lower bound of O(N) is placed on the relaxation time, using variational eigen- 
functions corresponding to the two kinds of continuum modes. 
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1. I N T R O D U C T I O N  

Statistical models in which each microstate maps to an interface--which I 
will call "height models"mtend to be interesting, for the interface is often 
rough, and it turns out the model has critical correlations, t~-8) This paper 
considers the corresponding dynamics, using one of the simplest lattice 
statistical models: the dimer covering of the square lattice, tg' ~o) The dimers 
are placed on the bonds and every site must be touched by exactly one 
dimer. (This is equivalent, of course, to the packings of "dominoes" of size 
2 x 1; tll) furthermore the ground states of the fully frustrated Ising model 
on the square lattice tl2) map 2-to-1 to the dimer coverings.) In-this paper, 
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I only consider the case where each packing has equal weight. The system 
is taken to be a square of L x L sites with periodic boundary conditions for 
the dimers. 

The statics can be described by mappings to free fermions, and exact 
solutions are possible using Pfaffians 19' ~0) or transfer matrices, tl3' t4)There 
is a nonzero ground state entropy of 0.2916 per site. 19~ The correlation 
functions are critical t~5) (power-law decaying). This is easiest understood 
after mapping the dimer packings (configuration-by-configuration) to 
configurations of "heights" z(r) living on dual lattice sites, r = (x, y), 
representing a rough interface in an 3-dimensional abstract space, t~-s) 

When such a model is endowed with dynamics, a central question is 
how the equilibration time r(L) (to be defined shortly) scales as a function 
of the system diameter L. In particular, what is the dynamic exponent z t~6) 
in r ( L ) ~  L:?:Since the static continuum model has a gradient-squared free 
energy, one would suspect that z = 2. Indeed, scaling with z = 2 has been 
seen numerically in simulations of the square lattice dimer model, t~8~ (It 
has also been seen in antiferromagnetic Ising models ~7~ and random-tiling 
quasicrystal models t~9) with height representations.) However, it has only 
been proven 12~ that (with our definition of time scale) r(L) ~< O(N3), which 
implies z ~ 6. 

This paper has two aims: (i) an explicit approximate description of the 
slowest eigenmodes of the time evolution, based on continuum theory--  
this theory is applicable, with small changes, to any height model; (ii) the 
outline of a proof that r(L) I> O(L 2) (and hence z i> 2). 

The outline of the paper is as follows. The remainder of this section 
specifies the model, in particular the height mapping and dimer-flip 
stochastic dynamics, and also points out an exact correspondence of the 
entire spectrum of the quantum dimer model to that of this dynamics. 
I then take up a continuum model in terms of the height representation 
(Sect. 2) which is defined by standard Langevin dynamics, verifying that 
this is the appropriate coarse-graining of the microscopics. This produces 
an approximate description of all the slow eigenmodes (Sect. 2 and 3). 
Intriguingly, the slowest mode in any finite-size system is not the longest- 
wavelength capillary wave, but a "height-shift" mode involving diffusion of 
the system-wide average "height" direction (Sect. 3). 

Finally (in Sect. 5) I explain how rigorous bounds on the dynamics 
can be proven. The fundamental concepts for this proof are (i) the use of 
Fourier analysis to partially diagonalize the evolution matrix ~/', (ii) con- 
structing variational "wavefunctions" guided by the results of the earlier 
sections, and (iii) taking advantage of the Fourier spectrum of height fluc- 
tuations derivable from the exact solution of the model. In the conclusion, 
I mention other spin models to which these results should be relevant. 
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Fig. 1. (a). Random dimer packing, showing heights z(r) (those in flippable plaquettes are 
circled). (b). Elementary dimer flip, showing heights. 

A. Height Representation 

The explicit rule for constructing a height pattern {z(r)}, given a 
snapshot of the dimers, is shown in Fig. 1: z ( r ) - z ( r ' ) = - 3  if there is a 
dimer between r and r', or + 1 if there is no dimer, where the step from r 
to r' is taken in a counterclockwise sense about the even sites. The net 
height difference is zero for the path around one plaquette, and hence by 
induction for any closed path, showing the consistency of the definition. 
However, it is nonunique in that adding the same constant to each z(r) 
makes an equally valid height representation of the same dimer configura- 
tion; I shall fix this constant after defining the dynamics (below). 

It is necessary in writing the continuum model for z(r) (e.g., to define 
its Fourier transform) that z(r) satisfy periodic boundary conditions; but 
periodic boundary conditions for dimers only imply z(L, y)-z(O, y)= wx 
and z(x, L)-z(x ,  O)= Wy, where the "winding numbers" wx and Wy are 
multiples of 4, so that the system has a mean tilt is (wx/L, wy/L). Local 
update rules (such as I am about to define) conserve the winding numbers. 
Thus one could define substracted heights z'(x, y)=z(x, y ) - ( w x / L ) x -  
(wy/L)y which do satisfy periodic boundary conditions. In the limit of 
small tilts, z'(r) would obey the same continuum dynamics. 2 This trivial 
generalization is not worth the added complication in notation; in the 
remaining sections I will consider only configurations with (w~, Wy)= (0, 0). 

The ground states of the.fully-frustrated Ising model on the square lat- 
tice may be mapped (2-to-l) to dimer coverings of the dual square lattice. 
The rule is: simply draw a dimer across every violated bond. Therefore that 

2 If tilts are nonvanishing as L ---, oo, the free-energy functional (7) must be generalized to have 
different stiffnesses for components of the gradient parallel to and transverse to the tilt direc- 
tion; the same power laws for the dynamics would be deduced. 
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model has a height representation and all my results apply equally to the 
fully-frustrated Ising model. 

The height variable will play the role of the "order parameter" in this 
paper. The more customary order parameter, for any of the height models, 
is a spin operator re(r) (or a dimer occupation operator, in the present 
case). However, as outlined in Appendix A, such an m(r) is simply a 
sinusoidal function of the local height. Since the long-distance and longtime 
height fluctuations discussed here are Gaussian, it is possible from them to 
compute the correlations of re(r) which turn out to be algebraic with non- 
universal exponents. 

B. Dynamics 

It is possible to turn any dimer covering (of zero mean tilt) into any 
other one by a succession of "dimer flips" each affecting two dimers on 
opposite edges of one plaquette (see Fig. lb). Thus the model is endowed 
with a stochastic (Monte Carlo) dynamics in continuous time as follows: 
select plaquettes at random, at a rate N per unit time where N - L  2 is the 
number of sites (i.e., on average visit each plaquette once per unit time). 
Flip the plaquette if it has two dimers as in Fig. l b, otherwise do nothing. 

On the other hand, the natural zero-temperature dynamics of the fully 
frustrated Ising model is to choose a spin at random and flip it i f the  
energy change would be .zero, otherwise do nothing. This induces exactly 
the same dynamics on the dimer configurations as specified in the preceding 
paragraph. 

To eliminate the arbitrariness in defining z(r) and ensure that the 
coarse-grained dynamics is continuous in time, we relate z(r, t) at different 
times, by specifying that a dimer flip on a plaquette changes only the z(r) 
value in that plaquette's center. (Notice that the possible z(r) values on a 
particular site can only differ from the initial value by a multiple of 4; the 
values of z(r) (mod 4) define four fixed, square sublattices. ~2~) 

Now let { p~(t)} be the probability of being in microstate ~ at time t. 
The master equation states 

dp~(t)_ ~ (pa_p~)_._~ ~r pp (1) 
dt '<= -. p> /~ 

where < 0c ~ fl> means summing over configurations fl which differ from 
by one dimer flip; thus 
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where d is the adjacency matrix (elements unity if 0c and fl are related by 
a flip, and zero otherwise), and F~ = Za  ~r is the number of "flippable" 
plaquettes in configuration 0c. These matrices are Mo x Mo, where M0 is the 
number of microstates. It is well known that the matrix # has nonnegative 
eigenvalues (via the Perron-Frobenius theorem, since ~/" is a stochastic 
matrix). The eigenvector of zero eigenvalue is p~ = 1/Mo, the weight of the 
(equilibrium) steady state (which is unique, since dimer flips connect all 
microstates). Furthermore, any time correlation function in the system can 
be resolved into a sum over eigenvalues 2 of # ,  in the form 

c;~e-;" (3) 
;t 

Then it is normal to define the system's equilibration time 

r(L) = 2 " , . - '  (4) 

where .~nin is the smallest nonzero relaxation rate, the inverse of the second 
smallest eigenvalue of #2  

C. Quantum Dimer Model 

In the quantum dimer model, the basis states are taken to be the 
dimer coverings, and the Hamiltonian is taken to have matrix elements 

(5) 

The first term describes dimer flips--like a particle quantum "hopping" with 
amplitude unity on the microstate graph; the second term is a "potential 
energy" which penalizes each flippable plaquette. 

When V= 1, obviously 

~/~ = ~ a  (6) 

Ref. 21 noted that (6) implies the ground state wavefunction of (5) is a 
superposition of all the dimer packings with equal amplitudes. In other 
words, that (quantum) wavefunction is proportional to the steady-state 
probabilities of the (classical) dynamics (1). 

Here I note that (6) further implies a one-to-one correspondence of 
all the eigenstates of (5) to normal modes of the master equation. Thus 
the bounds derived in this paper for the slowest relaxation rate are equally 
valid for the energy gap in the quantum model, and the approximate 
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eigenfunctions and eigenvalues found in Sect. 2 and 3 also describe the low- 
energy spectrum of the quantum dimer model. 

2. CONTINUUM THEORY OF DYNAMICS 

This section develops the continuum ("coarse-grained") version of the 
dynamics. In this form the model has an easily visualized physical meaning 
and (being linear) is solvable by standard and almost trivial techniques. In 
general, the slowest modes are associated with relaxation of the "order 
parameter"; ~16'22~ in the dimer covering model, the height variable plays the 
role of a (hidden) order parameter, so the dynamics are phrased in terms 
of it. 

It should be noted that this theory is general to all rough height models. 3 
The only specific information from the dimer model is the-numerical value 
of the elastic constant K and of the height space lattice constant ah, which 
are also known for many other height models. 

A. Continuum Equations and Fourier Modes 

First I review the coarse-grained picture of the height dynamics. The 
static free energy functional has the form 

ft K F =  o.L]2dEr ~ IVh(r)l 2 (7) 

Here h(r) represents a smoothed version of z(r) and K is the stiffness con- 
stant controlling the fluctuations of the "interface." (From here on I assume 
zero net tilt of z(r) and of h(r) so these variables satisfy periodic boundary 
conditions.) The fact that the dimer model is rough (described by (7)) 
is nontrivial: several other height models, defined in similar ways, are 
found ~5-s) in which the interface turns out to be smooth, or marginal. The 
roughness is confirmed only through the calculation in Appendix B. 

The customary dynamics for such a field theory (see, e.g., ref. 22) is 
formulated as a Langevin equation, 

d h ,  r , _ ( ~ - F t~ F(  { h ( " ) } ) + ~" ( r, t ) ( 8 )  

d t  t~h(r)  

Here F is the kinetic (damping) constant measuring the linear-response to 
the force 8F/Sh(r), and ((r, t) is a random source of Gaussian noise, 

3 In the cases that z(r) has more than one component ,  it is necessary to let F be a tensor. 
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uncorrelated in space or in time. In order that Eq. (8) have for its steady 
state e x p ( - F )  with F given by Eq. (7), the usual condition 

' t '  r '  t '  (((r,  t ) ( ( r ,  )) = 2 F 6 ( r -  ) f i ( t -  ) (9) 

must be satisfied. 
In the context of models of real (rough) interfaces of crystals, Eq. (8) 

is known as the Edwards-Wilkinson process, t-'3~ There is a large literature 
on more elaborate equations of this form (usually with nonlinear terms). 1241 

To make plausible the assumption of uncorrelated noise, one must 
consider the action of the microscopic dynamics on the microscopic heights 
z(r). An elementary dimer flip changes z(r) on just one plaquette by 
+_. A z -  _+4, and the next dimer flip occurs at another random place. Thus 
the net height is not conserved, the change is local, and uncorrelated in 
time, which are modeled by the identical properties of the Langevin noise 
in (9). 

We can Fourier transform the above equations, since periodic bound- 
ary conditions maintain translational symmetry. My short-distance cutoff 
prescril~tion for this continuum field theory shall be that the fields' Fourier 
transforms have support only in the Brillouin zone (-re,  re)-'; in other 
words, the only allowed q values are those which are defined for the 
microscopic lattice model (see Sect. 5). Then (8) becomes 

~ 

d h q  9 

dt - f ' g  Iql- hq + (q~,t) (10) 

with Gaussian noise 
~ ,~, 

((q(t)* ('q(t')) = 2/"fiq. q, fi(t-- t') (11) 

(Note that 8q, q, is the discrete fi-function, appropriate to the discrete lattice 
of wavevectors corresponding to periodic boundary conditions.) Thus the 
different Fourier components are decoupled in (l 0). For each of them 
(except for q-O) ,  (10) is a one-dimensional Langevin equation with a 
restoring force. 

B. D y n a m i c  S c a l i n g  

The correlation function of the heights is easy to derive from the 
Langevin equation" it is 

~ ~ 1 t 
(hq(O) h_q(t)) =K[q[ 2 e -a"lq) (12) 
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where the relaxation rate is 

2h(q) = FK Iql 2 (13) 

Hohenberg and Halperin argued, t 16) that the dynamic exponent is best 
defined by the relation between relaxation rates and wavevectors. Then 
(13) implies z = 2. As a corollary to (13), the smallest relaxation rate of 
a Fourier mode corresponds to the smallest nonzero wavevector 
qmin - ( 2 r e / L ,  O) i.e., 

2h(qmin ) --" ( 4 ~ 2 F K )  L - 2  (14) 

Random tilings, with vertices not constrained to lie on a periodic lattice, 
are studied as models of quasicrystals, t ~7~ These too can be mapped to effec- 
tive interfaces z(r). (A complication, unimportant for the present discussion, 
is that the height function z(r) or h(r) has two or more components in the 
quasierystal cases.) In one case of a quasicrystal random tiling (in three 
spatial dimensions), (13) was confirmed by simulation, t~9) After z(r, t) was 
constructed, the data were numerically Fourier transformed to give :~q(t) at 
selected (small) wavevectors q; for q small, that is essentially hq(t). Then 
the time correlations (:~q(0)~,q(t)) were fitted to the form (12) and a plot 
of 2h(q) versus q revealed the behavior (13). A similar method t7) was used 
in a study of the Ising antiferromagnet of general spin at T =  0 on the 
triangular lattice, which also has a height representation. 

Ref. 18 simulated the random dimer model with dimer-flip dynamics; 
however rather than periodic boundary conditions, that work used "Aztec 
diamond" boundary conditions ~ )  such that h(r) is fixed (and spatially 
nonconstant) along the edges. The continuum equations below would still 
predict r ( L ) ~  L 2 in that geometry, as was observed in the simulations, t~s~ 
Note, though, that they define r(L) without the benefit of Fourier analysis, 
as the mean time it takes two (initially independent) replicas of the system 
to coincide, when evolved using identical random number sequences. 

C. Fokker-Planck Mode Spectrum 

Just as the discrete stochastic dynamics implies (1), the continuum 
stochastic dynamics (8) implies the familiar Fokker-Planck equation for 
the evolution of the probability density P( { hq(t) } ),4 

4 The customary abuse of notation is committed in which hq appears to be manipulated as if 
it were a real variable; the convention dh*/dh=O justifies the manipulations in (15)-(21). 



Relaxation Time for a Dimer Covering with Height Representation 491 

P({ ~.(t)} )=  ~ {  P({ T,.(t)} )} dt 

r d ~ (  d )P({hq(t)}) ,, + K lql:' h,, dh, dh_q (15) 

A physicist analyzing the Edwards-Wilkinson dynamics (8) would 
usually have stopped at (12). That does indeed represent the slowest 
Fourier mode at each wavevector, but there are many more eigenmodes of 
the general Eq. (15). These modes are worth computing because (i) they 
permit computation of more general correlation functions than (12) (ii) the 
analytic form of the modes, derived below, might inspire improvements on 
the variational eigenfunctions used in Sect. 5, and (iii) these modes 
correspond to" excited states in the quantum dimer model at its critical 
point (see Subsect. 1C, above). 

The unique zero eigenvalue of Eq. (15), corresponds of course to the 
Boltzmann distribution which is a Gaussian: 

( Po({h.(t)})-exp - q  o~Klq l "hqh  _q) (16) 

To construct all the other eigenfunctions, it is convenient to write 
~g({hq(t)} )=  P({hq(t)} ) Po({hq(t)} )-,/2 so that the time evolution operator 
of ~( { hq(t) } ) is Hermitian: 

d 
7t({ hq(t)} ) = - "~h ~({hq(t)} ) (17) 

where 

- ( - _ ~- ~ K Iql ~ T,q dr,_. § ~ K Iql~hq dh _q 

- Z FK Iql 2 ~*q% 
q#O 

(18) 

where the "annihilation" operator is 

% -  Klql ~ 
~/2( d 1 [ 2 )  

d~-q + ~ K l q  hq (19) 
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and the corresponding "creation" operator is 

(l~Tq -~ K Iql 2 - ~ + ~ K Iql / ~_,  (20) 

Of course Cr commutes with cgq, for all q ' ~  q. Obviously this is mathe- 
matically identical to the quantum Hamiltonian for a set of harmonic 
oscillators with frequencies 2h(q) given by (13), with a "ground state 
wavefunction" ~0 = p1/2. 

Now we can write any other eigenfunction: 

~({hq} ; {n(q)} )=  (qI~o ((~Tq)n(q)) ~,r ) (21) 

where { n(q)} are any nonnegative integers, corresponding to the occupation 
numbers of the oscillators. When translated back in terms of P({hq(t)} ), 
we see that each eigenstate is a product of P0({hq(t)} ), times polynomials 
in {(�89 '/2 hq}. For the "elementary excitation" in which n(q)= 1 for 
one wavevector and zero for all the others, this polynomial is exactly hq; 
this explains why the correlation function (12) sees only that one eigenmode. 

The eigenvalue corresponding to (21) is 

2,o,({n(q)})= ~ n(q)2h(q) (22) 
q:~O 

corresponding to the total energy of the quantum oscillators. The net 
wavevector is 

q,,,= ~ n(q)q (23) 
q~O 

Notice the many degeneracies resulting from the fact that 2 ( q ) = 2 ( - q ) :  
not merely the degeneracies due to global symmetries such as q ~ - q ,  but 
less trivial degeneracies such as the one between the mode with n(q)= 
n(-q) = 1 and the one with n(q)=2, n(-q)=0. 

3. H E I G H T - S H I F T  M O D E  

Besides the translations in real space, a height model (as I define it) 
has the additional symmetry of translations in "height space" (the target 
space of z(r) and h(r)). Correspondingly we will find another kind of slow 
mode (in a finite system), corresponding to a random walk of the mean 
height, which I will call the "height-shift mode." It will turn out to be the 
slowest mode. 
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Consider the average height 

h(t) = N - t  ~ d2r h(r, t) (24) 
Je 0, L]  2 

i.e., N-I/2"ho(t) (the factor N !/2 comes from my normalization convention 
for Fourier transforms.) Of course, this is just the q = 0 mode t h a t  was 
excluded from in the preceding section (e.g., in (21) and (22)). The 
Langevin equation (8) with Iql = 0 tells us ho(t) simply executes a Gaussian 
random walk. 5 

When h(r) describes a genuine interface, states with different h are all 
distinct, and the distribution of h simply spreads diffusively without ever 
reaching a steady state. However, in the dimer model (and all other "height 
models"tt'5-s~)::the height map is one-to-many: here a global shift of 
z(r) ~ z(r) + 4 describes exactly the same dimer configuration, so the image 
space of h(r) should be considered a circle of diameter 4. Thus the distribu- 
tion function, which begins sharply peaked at a particular value of h, will 
evolve to a uniform distribution at some rate. 

To make this mode more concrete, it may help to compare with the 
behavior of a spin operator as seen in Appendix A. A system with a height 
distribution peaked at (say) 1 and 3 has more dimers in one orientation 
than in the other. As this n (0 )=  2 mode decays, this polarization of orien- 
tations will decay; thus these modes have quite real physical meanings. 

The random walk behavior (analog of (12)) is 

(I/~(t)-/~(0) 12) - D(N)t  (25) 

with a diffusion constant 

2F  
D(N) =--~- (26) 

It is interestirig that although the continuum theory cannot provide the 
numerical value of the coefficient F, it does predict an exact ratio (in the 
limit N -  L2 ._~ 0(3 ) between the relaxation rate of the modulation h(qmin, t), 
and the diffusion rate of the wandering of h(t). 

5 This behavior (and the assertions deduced from it) are valid only while the height model is 
in a "rough" phase. One motivation for understanding the relaxation modes (or quantum 
energies) is that they might serve as a diagnostic to distinguish rough and smooth phases in 
simulation results. 
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A. Fokker-Planck Modes of/~(t)  

The Fokker-Planck equation for h is simply the diffusion equation; its 
eigenfunctions are simply plane waves as a function of h, 

Q(/~) = exp(iah) (27) 

and the corresponding eigenvalue is 

2~(a) = �89 0 2 (28) 

with D(N) given by (26). If/~ were diffusing on a line, then any Q would 
be valid in (28) giving a continuum of eigenvalues. 

But, as noted above, a global shift z(r)--, z ( r )+4  of a microstate 
corresponds to the same microstate. Thus, the only modes which can 
correspond to modes in the microscopic model are those periodic under 
h(r) ~ h(r) + 4; i.e., 

Q=n(0)  ~- (29) 

for any integer n(0); and the smallest such eigenvalue is 

~ 2 F  
2~(zr/2) - 4N (30) 

Thus the complete set of eigenfunctions are 

~({hq} ; {n(q), q :/: 0}) ~/,,,o) ~/2(h) (31) 

a product of" (21) and (27), with any integer n(0). The corresponding eigen- 
value is 

2,,,( {n(q)}, q :/:0)+ n(0) 2 2~(zc/2) (32) 

with the first term from (22). The eigenvalue (30) given by n(0)= ___ 1 and 
n(q) = 0 otherwise, is in fact the overall smallest nonzero eigenvalue. 6 Thus 
(30) is smaller than (14) by a factor (16K)- ' .  From Appendix B, the exact 
value is K =  zc/16 so this ratio is l/re. 

6 Of course, (30) would not be smallest in the case of h(r) fixed along the boundaries, as in 
ref. 11 and 20, since that forbids/~-wandering modes. Notice also that, for systems of unequal 
length sides, the ratio of (14) to (30) is decreased by a factor Lmin/Lmax so that for a 
sufficiently elongated system the Fourier mode is the slowest one. 
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Is the height-shift mode qualitatively distinct from the capillary wave 
modes? Clearly there is a close connection--the uniform fluctuation of the 
entire sample of diameter L is much like the fluctuation of one quadrant 
of a system of diameter 2L with a long wavelength Fourier mode. I would 
argue there is a distinction, in that the rate of the h(t) relaxation depend 
on "internal" details of the height model; it cannot be inferred given only 
the capillary spectrum. 

For example, I have noted the fully-frustrated Ising model with single- 
spin-flip dynamics is identical to the dimer model except that it has a 
height space period of 8 rather than 4. Thus one must replace n/2 ~ re/4 in 
(29) and the smallest eigenvalue (30) is smaller by a factor 1/4. (In the 
fully-frustrated Ising model, a shift z --, z + 4 reverses all the spins; thus the 
mode with Q = ___re/2 is the slowest mode that is odd in spin.) In the other 
direction, I cannot rule out the possibility that in some height model, the 
stiffness constant K and height periodicity ah might have numerical values 
such that Ka~ > 1, in which case the slowest mode would be the Fourier 
mode. 

The relationship of the height-shift mode to the capillary wave modes 
(both of which are a consequence of height-shift sysmmetry), is reminiscent 
of the relationship between two kinds of low energy excitation in a quan- 
tum spin system (both consequences of spin rotational symmetry.) The 
height-shift mode is the analog of the change in total spin number (giving 
energies S(S+ 1)/22'); the capillary mode is the analog of a spin-wave 
mode. 

4. C O R R E S P O N D E N C E  TO D I S C R E T E  M O D E L  

The low-lying modes of the discrete model should be well described by 
the "quantum numbers" n(q) of the capillary modes and height-shift modes 
of continuum model. 7 Now, P0({hq(t)}) corresponds to the eigenmode of 
the discrete model which has equal weight p ~ =  1/Mo for every microstate. 
Thus the prescription for constructing the approximate eigenmode of the 
discrete system is 

~o({-~q} ) (33) 

7 The discrete model has additional lattice symmetries (rotations by zt/2 and reflections), 
which correspond to additional "quantum numbers;" it furthermore has a "locking" 
tendency (to favor a particular value of h(r) (modulo 1 ). Discussion of these complications 
will be deferred to a later publication. 125~ 
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Here Zq is considered an implicit function of the discrete state label 0t. We 
obtained (33) simply by replacing hq ~ Zq, and/~ ~ ~ defined by 

g=  N -l  ~ z(r, t) (34) 
r 

which one expects to be valid for small enough n(q) and q. 
However, (33) does not map every mode of the continuum equation 

to an approximate mode of the discrete one. Indeed, since each n(q) is 
unbounded from above, the continuum kernel ~ has infinitely many inde- 
pendent eigenmodes, whereas the discrete kernel ~ has only Mo eigen- 
modes. Presumably, when n(q) is so large that n(q) Iql z is of order unity for 
some q, the anharmonic terms that I omitted in writing (7) become impor- 
tant and mix this mode with others. Thus only q,o, is a good "quantum 
number" for labeling the higher modes. 

The low-energy eigenstates of the quantum dimer model (5) can be 
predicted from the above analysis. The wavefunctions should be approxi- 
mated by (31) and the energies given by (32). These predictions could be 
comp~ired ~25) with the results of recent exact-diagonalization studies on 
8 x 8 lattices. ~26) 

5. MICROSCOPIC THEORY 

Now we return to the exact microscopic dynamics, as introduced in 
Sect. 1. The microstates are viewed as nodes of a graph in an abstract 
space, with each possible dimer-flip (and its inverse) forming an edge of the 
graph: the dynamics described by (1) is a random walk on this graph. As 
noted already, the graph of microstates with tilt zero has only one connected 
component. The matrix r is not only stochastic but symmetric. 

A. Variational Bound 

The key idea in this section is the use of a variational guess for the 
eigenfunction. This is mathematically equivalent to the variational bound 
on the eigenenergy in the quantum dimer model (see Subsect. 1C.) 

For any vector { ~} ,  the smallest eigenvalue '~min satisfies 

( r  
"~min ~< '~b ~-~ i ~ ' ~ i  (35) 

Here ~* means the hermitian conjugate. From (2), the numerator is 

(~*~r ~ 1@~-r (36) 
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where (0~fl) means every pair of microstates, connected by a spin flip, is 
counted once. 

In the two cases considered in this paper (following subsections), 
I~-@~1- Izl~i turns out to be the same for every flip move. Then the sum 
(36) reduces to �89 IA~I 2 Z~F~ (the I/2 cancels the double-counting of each 
graph edge), and finally to �89 Izl~l 2. Heref i s  the probability that a given 
plaquette is "flippable," i.e., fN  is the average "coordination number" of the 
microstate graph. The exact value ttS~ is 

f =  1/8 (37) 

Meanwhile, the denominator in (35) is just Mo(I~bl2). Thus finally the 
upper bound is 

1 IL/~I z 
2 o =~ fN  (I~12------ ~ (38) 

When applied to the entire set of eigenvalues of ~/', Eq. (38) is not 
very interesting, since we already know that 2mi n --'-0 (the eigenvalue of the 
steady state). However, the variational argument (and every equation in 
this subsection) is also valid when restricted to a subspace orthogonal to 
that of the ground state. Then, the bound (38) can be useful since the '~min 
of such a subspace is usually positive. 8 Indeed, the overall smallest nonzero 
eigenvalue--the goal of this paper (see (4))mis expected to be the ~'min of 
one of these subspaces. 

The above variational argument was first presented ~27~ with a physical 
interpretation in terms of the normalized dynamic correlation function 

(~b(0)*~(t)) 
Co(t)- < i~b12 > (39) 

Then C0(t)= 1 - �89 ~(t)12)/(l~bi2); but at short times, (l~b(0)- ~b(t)! 2) 
(Izl~l 2) fNt, since there are on average fN  independent places where a 

flip could occur. Thus the upper bound o n  2mi n can be rewritten as the 
initial decay rate of the correlation function, t27) 

dCo(t) 
dt t----O 

(40) 

8 In subsequent subsections, labels will be attached to 2mi. to indicate which subspace they 
belong with, but the labels have been omitted in the general argument here. 

822/89/3-4-2 
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Ref. 27 (and similarly ref. 28) applied (40) to bounding the dynamic critical 
exponent by a function of the static exponents (for a system with nontrivial 
exponents). 

In some circumstances, 2~ could be a good estimate of 2rain- It would 
be exact if subsequent steps in ~ were uncorrelated. (We assume our varia- 
tional ~b~ always has nonzero projection onto the slowest mode.) Then ~b(t) 
performs a random walk, and C0(t)= exp ( -  2or), a pure exponential decay. 
In light of (3), in which coefficients allowed by symmetry are expected to 
be generically positive, we would obtain 2mi n "-2r 

However, dynamics actually adopted (in Eq. (1) is such that the steps 
are manifestly anticorrelated in time. For, if a plaquette flips, it must 
undergo the reverse flip the next time it flips, unless its configuration has 
been shuffled in the meantime by flips of the adjoining plaquettes. So one 
would expect (.but did not prove!) that 2mi n < 2~ as a strict inequality. 

B. Fourier Modes 

First we review the use of basis states with definite q vectors. Consider 
the action of a translation of r; this induces a permutation of microstates 
which manifestly commutes with ~/'. Thus all eigenvectors must have a 
definite wavevector q (or can be chosen thus); that is, a translation by r 
simply induces a multiplication by exp(iq, r) of the eigenvector. Further- 
more ~r must have zero matrix elements between vectors with different q; 
thus #" becomes block-diagonal in the new basis of states with definite q. 
Hence (35) is valid for the smallest eigenvalue 2mi.(q) in each block of 
definite q; that is, if { q~} has wavevector q, then 

(~*~)  
2rain(q) ~< ~ (41 )  (~*~) 

A suitable variational state-space vector (for q ~-0) is suggested by the 
"elementary excitation" eigenfunctions of Subsect. 2C; they consisted of the 
steady-state eigenfunction ~u 0 multiplied by h q. The microscopic analog of 
the gaussian ~o is the equal-weighted eigenfunction of # ' ,  hence we choose 

~b~ t -  ~,l(~) (42) 

(Here ~q(0~) means take the configuration z(r) corresponding to microstate 
0c and Fourier transform it for wavevector q). 

If 0c, fl are related by one dimer flip on the plaquette at r s, the cor- 
responding configurations of z(r) differ only by -I-zlz= +4  at r s. 
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Consequently IA~[ 2 
is exactly 

--[dzl2/N. On the other hand, the denominator of (35) 

!~.(~)! 2-- M0< [-~(q)[ 2 > (43) 

(recall each microstate is weighted equally). Thus the variational bound 
has the form 

2rain(q) ~< 8f/< l~.(q) [ 2 > (44) 

Finally, we know < ls ~ 1/K lql 2 at small q, as derived in Appendix B. 
Eq. (B10). This gives the result (for small q) 

2m~,(q) ~< 8fK lql 2 (45) 

If we assume (13), then (45) gives a bound on the kinetic coefficient: 

l"<. �89 f =- 8 f (46) 

This approach--constructing a variational vector from the Fourier 
transform of a local opera tor~is  equivalent to the "single-mode approxima- 
tion" used for quantum many-body systems such as superfluid helium. ~29) 
Indeed, ref. 21 already noted (in the context of the quantum dimer model) 
that an exact upper bound on the eigenvalue is implied. Their proposed 
variational wavefunction is the Fourier transform of an dimer density 
operator n~(r). In fact, this is actually just A~z(r) (difference operator in the 
direction r = x ,  y); thus their choice differs from (42) only by a derivative. 
They did not identify the excitations as capillary waves, but derived the 
exponent z = 2 using the correlations of ref. 15. 9 

C. H e i g h t - S h i f t  M o d e  

The variational trick also works for the random walk behavior of (26). 
Obviously the microscopic analog of (24) is zT(t) defined by (34). Then the 
q = 0 modes can be further block-diagonalized into modes with particular 
wavevectors Q in height space, as defined in Subsect. 3A, hence the varia- 
tional bound is valid within each such block (to be labeled "(0; Q)"). 

In analogy to (27), we use the variational vector 

$~" QI= e iQ-~ (47) 

9 Caution: the correlation function exponent entering this calculation is always exactly 2, even 
when the spin operator exponents decay by exponents ~# 2 (see Appendix A). That situa- 
tion arises in the other height models, or in the dimer model when configurations are 
weighted unequally. 
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In this case, IA~bl = Isin(QAz/2N)l for any state ~, with dz = +4  the same 
as before, and obviously I~b=l = 1 in any state. So from (38) we obtain the 
bound 2mi,(0; Q)<~ �89 or 

'~'min(O; Q) <~ 8fQZ/N (48) 

for large N. 
Just like the results (13) and (28) for the two respective kinds of 

mode in the continuum model, the best variational upper bounds for slow 
relaxation rates in the microscopic model correspond respectively to Iql = 
]qmi, I =2niL in (45) Or to Q=n/2 in (48). Either kind of bound implies a 
lower bound on the relaxation time 1: which is O(L2). The better bound 
comes from (39), and after substituting the value o f f  (37) gives 

r >~ (2/rc)Z N (49) 

It is interesting to note that (48), when compared to (26) and (28), 
gives the same bound on F as Eq. (46) derived from Fourier modes. This 
might be taken as an approximation for F ,  which amounts (as already 
noted) to neglecting the anticorrelation of flips. Such an approximation for 
/" was made in a random tiling quasicrystal model. (See Sect. 4A and foot- 
note 36 of ref. 19). This turned out (19) to overestimate the true F (estimated 
from the simulation) by about 50%. 

6. DISCUSSION 

A. Summary 

The results in Sect. 2 and 5 exemplify the fruitfulness of Fourier 
analysis in models with translational symmetry; indeed two types of 
Fourier transform were used. For capillary wave modes (Sect. 2, and sub- 
sect. 5B), the Fourier transform operates with respect to translations in 
physical space. For height-shift modes (Sect. 3 and Subsect. 5C), it operates 
on translations in "height space." For each type of mode, two arguments 
have been given, one based on a coarse-grained field theory (Sect. 2 and 3) 
and the other based on exact bounds (Sect. 5), which indicate the longest 
relaxation time scales with system size as L 2. 

The only rigorous consequence of the present argument is a lower 
bound (49) on the longest relaxation time. For computational purposes 
one prefers, of course, an upper bound on the time needed to equilibrate 
the system. Towards this end, the present calculation merely suggests the 
possible usefulness of Fourier analysis in such a demonstration, and warns 
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that the slowest mode is not a Fourier modulation at all but the ":~ diffu- 
sion" (see Subsect. 3A). 

B. Computational Physics 

This study is relevant to the dynamics of other spin models. In par- 
ticular, its results apply directly to the critical dynamics of the fully- 
frustrated Ising model on the square lattice since that model (at its critical 
temperature, Tc=0)  maps to the dimer covering, t~2) The single-spin-flip 
dynamics in the spin model maps to the dimer-flip dynamics used here. 

The derivations could be trivially adapted to the dimer covering of the 
honeycomb lattice and hence to the critical (T,. = 0) dynamics of the tri- 
angular Ising antiferromagnet (equivalent to the dimer covering~)). The 
behavior argued here can be expected in other spin models which have 
height representation and single-spin update rules, e.g., the T = 0  three- 
state Potts antiferromagnet on the square lattice (equivalent to the 6-vertex 
model t3~ and hence the BCSOS model). In those cases, however, no exact 
results or rigorous bounds for the static fluctuations are available to 
replace Appendix B. 

Understanding the local dynamics addressed here is also a prerequisite 
to addressing the dynamics of height models endowed with loop-update or 
cluster-update rules, including fully-frustrated Ising models, ~32) the three- 
state Potts antiferromagnet on the square lattice, t33~ the BCSOS model, t34~ 
and coloring models, c5) to More speculatively, it would be interesting to 
check whether there is any connection between the Swendsen-Wang t3s~ 
algorithm and the height representation in the case of the ferromagnetic 
4-state Potts model, the partition function of which can be mapped to that 
of a height model, t36) 

Incidentally, the static correlation exponents of height models have 
been obtained from Monte Carlo simulations much more accurately via 
Fourier analysis of the heights, than via direct measurement. It seems likely 
that the same is true for dynamic measurements; this might help in evaluating 
the dynamic exponent for cluster-acceleration algorithms (see ref. 30). 

Somewhat analogous to the loop-update rules are the "zipper 
moves ''t17'37) of certain random tiling quasicrystal models, such as the 
(two-dimensional) square-triangle random tiling. In that case, the correla- 
tion time was measured to be of O(1) update move per site; t37~ however 
each update move involved O(L 2) sites, so the scaling of the net correlation 

10 It turns out that all the algorithms cited have a simple action on the height variables, thus 
the existence of a height map may be a prerequisite to the possibility of accelerating such 
models. 
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time was O(N 2) just as for the local dimer flip dynamics treated in the 
present paper. 

The height field is the hidden order parameter in the present model (or 
of height models in general) and hence is the proper way to approach the 
coarse-grained, long time dynamics. Note that experience has shown that 
the static exponents are extracted much more efficiently from ([h(q)l 2) 
than from spin-spin correlations (using the same simulations), tS" 6. 8)There- 
fore, I suggest numerical studies of the dynamics ought to extract estimates 
of the correlation times directly from the height fields rather than from 
spin-spin correlations. 

APPENDIX A: CORRELATIONS OF SPIN OPERATORS 

This appendix shows that a standard order parameter m(r) of dimer 
coverings t2'2~) reduces to a function of the heights, and correspondingly its 
asymptotic correlations are a function of those of the heights. (This works 
for the standard order parameters of all height models; the derivation for 
equal-time correlations is discussed at greater length in refs. 1, 5-8.) 

Each site r -  (x, y) of the direct (not dual lattice), is connected to one 
other site r' = (x', y') by a dimer. Define m(r) = ( -  1 )x + x,+ ~ (( _ 1 )Y+ Y'+ l i) 
for dimers running in the + x ( + y )  direction. ~ Then (with the arbitrary 
constant offset of z(r) fixed as in Fig. 1) 

m(r, t) = e itn/2)(&r" t)+ 3/2) (A1) 

where/~(r, t), defined on direct sites, is the average of the four z(r, t) values 
on the surrounding dual sites. 

Then 

G(r, t) = (m(0, 0) m(r, t))  ~ exp - ~  C(r, t) (A2) 

where 

C(r, t) = ([/~(r, t ) - /1(0,  t)] 2) (A3) 

Using Fourier transformation with Eqs. (12) and (13), one obtains 

f d2q 2[ 1 - e  -rKIql't cos(q, r)] C(r, t ) =  ~ n  (A4) 

Jl One could equivalently consider m(r) as living on the occupied bonds, since m(r) always 
takes the same value at either end of a dimer. 
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a logarithmic divergence cut off at high q by the inverse lattice constant 
and at small q by min(r -=, [FKt]-=/2). Thus finally the correlation func- 
tion behaves as 

l ~(r/x/FKt) G(r, t) ~ 
rn/2 

(A5) 

where q~() is a scaling function, such that G(r, t ) ~ r  -""'2 or G(r, t )~  
(I'Kt) -=/2~"/2 depending whether r/x/'F-Ktt is much less than or much greater 
than unity. This shows that the dynamic critical exponent defined from the 
standard correlation functions is indeed z = 2 .  =2 

APPENDIX B: STATIC FLUCTUATIONS 

This appendix reviews what is known exactly about the equal-time 
fluctuations of Fourier components of z(r). This result will be an essential 
lemma for the proof about 2(q) outlined in Sect. 5. 

Evidently, in the continuum picture, the equal-time expectations are 
given by 

(Recall that h* = h 

1 
<h*hq,) = 0q.q, K iql2 (B1) 

_q.) This scaling is equivalent to 

1 
( I h ( r ) -  h(r')l 2) = O( 1 ) + ~ In I r -  r'l (B2) 

in direct space. 
In the study of "height models ''~6"5'8" 7) and random-tiling quasicrys- 

tals, ~=7) it is the fundamental hypothesis that :~(q) has a behavior like (B1) 
at small q. The behavior (B 1 ) has been proven rigorously for a very limited 
set of discretemodels, 139~ and not even for the well-known BCSOS model 
of rough i n t e r f a c e s .  ~4~ Even though the latter model is "exactly s o l u b l e  ''~4=~ 

via the Bethe ansatz, such correlation functions are not known exactly 
(correlation functions are notoriously difficult to extract from the Bethe 
ansatz method t 42 ) ). 

However, the dimer covering model (with 2D Ising models) belongs 
to the "free-fermion" class of exactly soluble models, t9' =o) and using the 

12 Eq. A5 was previously derived in the context of the hexatic order parameter: see Eq. (5.13) 
of ref. 38. 
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Pfaffian approach the dimer-dimer correlation functions can (in principle) 
be written out exactly. ~5) Later on McCoy evaluated the large-distance 
asymptotic behavior of the correlation function, for any orientation of the 
vector between the two dimers, t43) 

Say that nx(r) = 1 when there is a dimer connecting r to r + [ 1, 0] and 
zero otherwise; gnx(r) = nx(r) - < n.,.(r) > = nx(r) - �88 similarly for ny(r). 

It was computed ~5) that, in the equal-weighted ensemble of dimer 
coverings, 

C~x(R)-  <On.,.(r) ~n,.(r')> = - g(X, y)2 + g(X+ 1, Y) g ( X -  1, Y) (B3) 

Here R = (X, Y) = r' - r, and g(X, Y) is a Green's function arising from the 
Pfaffians. 1~5) At large R, 

1 Y 
n: R 2 '  

g(X, Y)~_ i X 

X odd, Y even; 

X even, Y odd; 

otherwise 

(B4) 

Hence, collecting the four cases (X and Y even or odd), 

1E y2_x2 11 C~x(x, r ) ~ ~  (-1) ~+ ~ R----z--+(-1)x~ (as) 

Dimer correlations imply correlations in height gradients since the 
definition of z(r) (Sect. 1) is equivalent to 

! z(r+ [~, �89 [-�89 �89 = (- l)~+Y4~ny(r) 

z(r+ [�89 �89 [�89 -�89 -~+y+' 4finx(r) 

(B6a) 

(B6b) 

Combining (B5) and (B6b), with 

z(r + [�89 � 8 9  + [�89 -�89 V:,z(r) (B7) 

gives 

42[ YE-X2 1 1 <Vyz(r) Vv, z(r')>. ~h--~ 2 ~ R 4  -+-(-- 1) r ~ (B8a) 
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The term in (B8a) multiplied by ( -  1)r will be neglected since it averages 
to zero. Similarly, using the analogous formulas for < gn,. ~Sny), 

4 2 2XY 
(VxZ(r)  Vy, Z(r')> --- 2~ 2 R4 (B8b) 

and 

4 2 iX-2_ y2 
<Vxg(r) Vx'Z(r')> ~-- - - ~ 2  R 4 ~ + (-1)XR1----5] (B8c) 

The non-oscillating correlations in Eqs. (B8) have the form of dipole- 
dipole interactions, as if Vz(r) is a polarization, t43) Integrating these equa- 
tions with respect to R, 

16 r' <lz(r) -z(r ' ) i2> = c o n s t + - w l n  I r -  I 3Z- (B9) 

and Fourier transforming yields the required result, 

16 
< le'(q)12> =zc lql" (BtO) 

The behavior is indeed described by the continuum mode (B1), with 
K =  zc/16. 

An exact result for arrow-arrow correlations was also obtained for a 
special case of the 6-vertex model, t~4) and applied to compute exactly the 
coefficient of the logarithmic asymptotic behavior of < [z(r)-z(r ' ) [  2> for 
the corresponding BCSOS model, t44) (The BCSOS model is just the height 
mapping of the 6-vertex model). Actually, the parameter values in that 
special case make it equivalent to a random dimer covering. To convert the 
h(r) of the dimer model to the height hscsos(r) of a BCSOS model (with 
lattice constant x/~), put h(r)/2 =hscsos on the sublattice with even h(r) 
and erase h(r) on the sublattice where it is odd. (See also ref. 45; to relate 
this to other versions of the same mapping between models 146) reverse all 
the arrows pointing along vertical bonds). 
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